

agraria agroalimentare agroindustria | chimica, materiali e biotecnologie | costruzioni, ambiente e territorio | sistema moda | servizi per la sanità e l'assistenza sociale | corso operatore del benessere | agenzia formativa Regione Toscana IS0059 – ISO9001

www.e-santoni.edu.it e-mail: piis003007@istruzione.it

PEC: piis003007@pec.istruzione.it

PIANO DI LAVORO ANNUALE DEL DOCENTE A.S. 2022/23

Nome e cognome dei docenti: Paola Selleri-Caterina Fotia (ITP)

Disciplina insegnata: Scienze integrate_Chimica

Libro di testo in uso Bagatti F., Corradi E. – "Chimica verde" – Dall'osservazione della materia alle macromolecole organiche - Zanichelli

Classe e Sezione 2 LN

Indirizzo di studio:

Chimica, materiali e biotecnologie – Articolazione Biotecnologie Sanitarie (Sez L) Settore moda (Sez N)

1. Competenze che si intendono sviluppare o traguardi di competenza

- > Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà naturale e artificiale e riconoscere nelle sue varie forme i concetti di sistema e di complessità
- Analizzare qualitativamente e quantitativamente fenomeni legati alle trasformazioni di energia a partire dall'esperienza
- Analizzare dati e interpretarli sviluppando deduzioni e ragionamenti sugli stessi anche con l'ausilio di rappresentazioni grafiche
- Acquisire, interpretare e trasmettere informazioni anche attraverso l'uso di linguaggi specifici
- Essere consapevole delle potenzialità e dei limiti delle tecnologie nel contesto culturale e sociale in cui vengono applicate

2. Descrizione di conoscenze e abilità, suddivise in percorsi didattici, evidenziando per ognuna quelle essenziali o minime

Percorso 1: Consolidamento dei prerequisiti fondamentali ed introduzione alla quantità chimica: la mole e la molarità

Competenze:

- Acquisire, interpretare e trasmettere informazioni anche attraverso l'uso di linguaggi specifici
- Analizzare dati e interpretarli sviluppando deduzioni e ragionamenti sugli stessi anche con l'ausilio di rappresentazioni grafiche

Conoscenze:

- Classificazione delle sostanze: sostanze elementari e sostanze composte
- Rappresentazione con simboli e formule di sostanze e reazioni
- Bilanciamento delle reazioni
- Massa atomica e massa molecolare
- La quantità di sostanza e la mole
- La massa molare
- La molarità

<u>Laboratorio</u>

- La sicurezza in laboratorio: norme di comportamento e simboli di pericolosità
- Preparazione di soluzioni a molarità nota per pesata e per diluizione

Abilità:

- Associare il simbolo agli elementi principali
- Interpretare le informazioni di formule e modellini molecolari, distinguendo tra composti ed elementi
- Comprendere le informazioni presenti in un'equazione di reazione
- Bilanciare le equazioni chimiche in casi semplici
- Utilizzare la tabella delle masse atomiche per determinare le masse molecolari
- Indicare la massa molare delle diverse sostanze
- Associare a una data quantità chimica il corrispondente numero di particelle
- Applicare correttamente le relazioni esistenti fra: quantità chimica e massa presenti in un campione di sostanza
- Saper usare il concetto di mole come ponte tra il livello microscopico e quello macroscopico
- Eseguire calcoli relativi alla concentrazione molare di una soluzione
- Applicare le conoscenze teoriche alla preparazione di soluzioni a titolo noto in casi semplici per pesata e per diluizione

Obiettivi Minimi:

- Saper associare il relativo simbolo chimico agli elementi principali
- Saper interpretare le informazioni contenute in formule e modellini molecolari, sapendo distinguere tra composti ed elementi
- Saper decodificare le informazioni presenti in un'equazione di reazione
- Saper bilanciare le equazioni chimiche nei casi più semplici
- Saper ricavare le masse molecolari utilizzando la tabella delle masse atomiche

- Saper utilizzare il concetto di mole come ponte tra il livello microscopico e quello macroscopico
- Saper calcolare la concentrazione molare di una soluzione
- Saper effettuare i calcoli necessari alla preparazione di una soluzione a titolo noto per pesata

Percorso 2: Come sono fatti gli atomi

Competenze:

• Essere consapevole delle potenzialità e dei limiti delle tecnologie nel contesto culturale e sociale in cui vengono applicate

Conoscenze:

- La materia e la carica elettrica
- Le particelle subatomiche: le prove sperimentali che hanno portato alla scoperta delle particelle subatomiche ed il passaggio dalla teoria atomica di Dalton ai primi modelli atomici.
- Il modello nucleare di Rutherford
- L'identità chimica degli atomi in termini di numero atomico Z
- Il numero di massa A e gli isotopi
- Classificare le reazioni nucleari distinguendo tra fissione e fusione

<u>Laboratorio</u>

• Fenomeni elettrici della materia

Abilità:

- Descrivere le caratteristiche di massa e di carica delle particelle subatomiche che costituiscono gli atomi
- Determinare il numero di particelle subatomiche mediante il numero atomico Z e di massa A
- Spiegare come la composizione del nucleo consente di individuare l'identità chimica dell'atomo.
- Utilizzare Z ed A per identificare un isotopo e saperlo rappresentare
- Descrivere la disposizione reciproca delle particelle subatomiche nell'atomo in base al modello nucleare
- Distinguere le reazioni nucleari dalle reazioni chimiche anche in termini di energia in gioco
- Distinguere tra le reazioni nucleari di fissione e di fusione

Obiettivi Minimi:

- Saper descrivere le caratteristiche di massa e di carica delle particelle subatomiche che costituiscono gli atomi
- Saper ricavare il numero di particelle subatomiche mediante il numero atomico Z e di massa A
- Saper interpretare la tavola periodica sulla base del modello atomico descritto in termini di particelle subatomiche ricavando il numero di protoni e neutroni di un atomo
- Saper identificare un isotopo a partire del numero Z ed A
- Saper descrivere la disposizione reciproca delle particelle subatomiche nell'atomo sulla base del modello nucleare
- Saper distinguere tra le reazioni chimiche e le reazioni nucleari

Percorso 3: Dai modelli atomici alla tavola periodica

Competenze:

• Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà naturale e artificiale e riconoscere nelle sue varie forme i concetti di sistema e di complessità

Conoscenze:

- Il modello atomico di Bohr
- Il modello atomico a strati e la configurazione elettronica
- Ioni ed energia di ionizzazione
- Il sistema periodico
- La classificazione degli elementi
- Le proprietà delle famiglie chimiche

Laboratorio

- Saggi alla fiamma
- Classificazione di sostanze elementari: metalli e non metalli
- Reazioni di metalli e non metalli

Abilità:

- Descrive la disposizione degli elettroni in base al modello atomico di Bohr
- Associare ad ogni elemento la sua configurazione elettronica
- Saper definire e riconoscere uno ione
- Correlare i valori di energia di ionizzazione alla struttura elettronica di un atomo
- Spiegare la relazione tra configurazione elettronica e disposizione degli elementi nella tavola periodica
- Classificare gli elementi in metalli, non-metalli e semimetalli
- Individuare, attraverso le loro proprietà chimiche caratteristiche, le principali famiglie chimiche
- Descrivere le principali proprietà periodiche degli elementi

Obiettivi Minimi:

- Saper descrivere la disposizione degli elettroni in base al modello atomico di Bohr
- Essere in grado di associare ad ogni elemento la sua configurazione elettronica
- Saper riconoscere uno ione
- Saper classificare gli elementi in metalli, non-metalli e semimetalli
- Saper descrivere le principali proprietà periodiche degli elementi

Percorso 4: Gli elettroni si mettono in gioco: i legami chimici

Competenze:

• Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà naturale e artificiale e riconoscere nelle sue varie forme i concetti di sistema e di complessità

Conoscenze:

- Elettroni di legame e regola dell'ottetto
- Legame covalente e legami multipli
- Legame ionico
- Legame metallico
- Legame chimico e proprietà delle sostanze

Laboratorio

 Riconoscimento di composti ionici, covalenti e metallici mediante la determinazione sperimentale di alcune loro proprietà

Abilità:

- Prevedere la formazione dei legami tra gli atomi sulla base della regola dell'ottetto
- Utilizzare i simboli di Lewis per prevedere il numero di legami che forma un atomo
- Saper spiegare le differenze tra i modelli di legame covalente, ionico e metallico
- Saper utilizzare la scala di elettronegatività per stabilire la polarità di un legame covalente
- Saper descrive le proprietà dei metalli, delle sostanze molecolari e dei composti ionici, sapendo associare le proprietà macroscopiche dei diversi tipi di sostanze (molecolari, ioniche o metalliche) ai diversi modi di legarsi degli atomi
- Saper prevedere, in base alla posizione nella tavola periodica, il tipo di legame che si può formare tra atomi di due elementi

Obiettivi minimi:

- Saper prevedere la formazione di legami sulla base della regola dell'ottetto
- Saper utilizzare i simboli di Lewis per prevedere il numero di legami che forma un atomo
- Saper distinguere tra i modelli di legame covalente e ionico
- Saper riconoscere la polarità di un legame covalente sulla base della scala di elettronegatività
- Saper prevedere il tipo di legame che si può formare tra atomi di due elementi sulla base della relativa posizione nella tavola periodica

Percorso 5: Forze intermolecolari e proprietà delle sostanze

Competenze:

• Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà naturale e artificiale e riconoscere nelle sue varie forme i concetti di sistema e di complessità

Conoscenze:

- La forma delle molecole e la teoria VSEPR
- Sostanze polari e apolari
- Forze intermolecolari e stato di aggregazione delle sostanze
- Forze intermolecolari e dissoluzione delle sostanze
- Soluzioni elettrolitiche

Laboratorio

- Le proprietà delle sostanze: prove di polarità, miscibilità e solubilità
- Riconoscimento e proprietà di soluzioni elettrolitiche

Abilità:

- Saper determinare la forma delle molecole semplici mediante la teoria VSEPR e saper prevederne le caratteristiche di polarità
- Saper distingue i legami secondari intermolecolari in base alle diverse forze che si stabiliscono tra le particelle costituenti le sostanze
- Saper prevede se due sostanze sono solubili o miscibili

- Saper interpretare i processi di dissoluzione in base alle forze intermolecolari che si possono stabilire tra le particelle di soluto e di solvente
- Saper mette in relazione le proprietà fisiche di sostanze e soluzioni con le forze che si stabiliscono tra le particelle
- Saper riconoscere e rappresentare i processi di dissociazione e di ionizzazione

Obiettivi minimi:

- Saper prevedere, nei casi più semplici, la forma tridimensionale delle molecole, utilizzando la teoria VSEPR, e le caratteristiche di polarità.
- Saper distinguere i diversi tipi di legami intermolecolari (legami secondari) anche sulla base delle diverse forze in gioco.
- Saper prevedere la reciproca solubilità o miscibilità di due sostanze

Percorso 6: Classi, formule e nomi dei composti

Competenze:

Acquisire, interpretare e trasmettere informazioni anche attraverso l'uso di linguaggi specifici

Conoscenze:

- Numero di ossidazione
- Elementi e classi di composti
- Composti binari: ossidi, idruri e idracidi (applicare le regole della nomenclatura IUPAC e tradizionale)
- Composti ternari: idrossidi e ossiacidi (applicare le regole della nomenclatura IUPAC-solo per idrossidi- e tradizionale)
- I sali (applicare le regole della nomenclatura tradizionale)

<u>Laboratorio</u>

- Preparazione di ossidi e anidridi
- Preparazione di idrossidi e ossiacidi
- Preparazione di sali

Abilità:

- Saper assegnare, nota la formula di una specie chimica, il numero di ossidazione a ciascun elemento presente
- Saper riconosce la classe di appartenenza dalla formula o dal nome di un composto
- Saper distinguere sperimentalmente i composti con proprietà acide e basiche
- Saper applicare le regole della nomenclatura IUPAC e della nomenclatura tradizionale
- Saper rappresentare le reazioni che portano alla formazione di ossidi acidi e basici, di acidi e idrossidi e di sali

Obiettivi minimi:

- Saper assegnare il numero di ossidazione a ciascun elemento presente in una formula chimica, nei casi dei composti più semplici
- Saper riconoscere la classe di appartenenza dalla formula o dal nome di un composto
- Saper distinguere sperimentalmente i composti con proprietà acide da quelli con proprietà basiche

 Saper applicare le regole della nomenclatura IUPAC e della nomenclatura tradizionale in semplici casi sia per l'assegnazione del nome di un composto che viceversa per la il suo riconoscimento

Percorso 7: Reazioni chimiche: cenni di stechiometria, energia e velocità delle trasformazioni e cenni al concetto di equilibrio chimico

Competenze:

 Analizzare dati e interpretarli sviluppando deduzioni e ragionamenti sugli stessi anche con l'ausilio di rappresentazioni grafiche

Conoscenze:

- Il calcolo stechiometrico e il reagente limitante in casi semplici
- Reazioni esotermiche e endotermiche
- La velocità di reazione e i fattori da cui dipende
- Energia di attivazione
- Cenni di equilibrio chimico e principio di Le Chatelier

Laboratorio

- Reazioni esotermiche e endotermiche
- Le reazioni e la loro velocità (influenza della concentrazione, della temperatura, dello stato di suddivisione dei reagenti, della presenza di un catalizzatore)
- Principio di Le Chatelier

Abilità:

- Saper utilizzare i coefficienti stechiometrici per stabilire relazioni tra reagenti e prodotti
- Saper individuare tra i reagenti quello limitante
- Saper utilizzare il concetto di mole per effettuare calcoli stechiometrici in casi semplici
- Saper stabilire se una trasformazione è esoenergetica o endoenergetica anche interpretando rappresentazioni grafiche
- Saper prevedere come cambia la velocità di una reazione a seguito della variazione di uno dei fattori che la influenzano
- Saper distinguere tra reazioni reversibili e irreversibili
 Saper prevedere l'influenza dei diversi fattori sulle reazioni reversibili

Obiettivi minimi:

- Saper utilizzare i coefficienti stechiometrici per stabilire relazioni tra reagenti e prodotti
- Saper effettuare il concetto di mole per poter effettuare semplici calcoli stechiometrici
- Saper prevedere come cambia la velocità di una reazione a seguito della variazione di uno dei fattori che la influenzano
- 3. Attività o percorsi didattici concordati nel CdC a livello interdisciplinare Educazione civica Nel primo quadrimestre sarà svolto un breve percorso di minimo 3 ore nell'ambito dell'area di Educazione Civica "Sviluppo Sostenibile" in base a quanto concordato con il CdC.

4. Tipologie di verifica, elaborati ed esercitazioni

Per le verifiche in presenza si veda quanto riportato nel PTOF

5. Criteri per le valutazioni

Per ciò che concerne i criteri per le valutazioni in presenza si fa riferimento a quanto riportato nel PTOF;

6. Metodi e strategie didattiche

- lezione frontale
- lezioni dialogate e partecipate
- lezione segmentata
- l'impiego dell'applicazione Classroom della piattaforma GSuite, attraverso attività in asincrono
- attività di flipped-classroom
- attività di tipo cooperativo
- svolgimento di "attività laboratoriali" o di laboratorio (se possibili)
- attività di "problem solving" legate soprattutto alle attività di tipo laboratoriale o all'attività di laboratorio
- mediatori didattici finalizzati alla visualizzazione grafica e alla formalizzazione di operazioni logico/mentali (grafici, schemi, tabelle, diagrammi.....)
- impiego di LIM, video
- impiego di software specifici per la disciplina e di programmi di simulazione
- recupero in itinere

Pisa li 30/11/2022 I docenti
Paola Selleri

Caterina Fotia